from examples.example_1_simplest_case.ex_1_model_classes_with_vidigi_logging import Trial, g
from vidigi.animation import animate_activity_log
import pandas as pd
import plotly.io as pio
= "notebook"
pio.renderers.default import os
Example 1: Simplest Case
View Imported Code, which has had logging steps added at the appropriate points in the ‘model’ class
import random
import numpy as np
import pandas as pd
import simpy
from sim_tools.distributions import Exponential, Lognormal
from vidigi.utils import populate_store
# Class to store global parameter values. We don't create an instance of this
# class - we just refer to the class blueprint itself to access the numbers
# inside.
class g:
'''
Create a scenario to parameterise the simulation model
Parameters:
-----------
random_number_set: int, optional (default=DEFAULT_RNG_SET)
Set to control the initial seeds of each stream of pseudo
random numbers used in the model.
n_cubicles: int
The number of treatment cubicles
trauma_treat_mean: float
Mean of the trauma cubicle treatment distribution (Lognormal)
trauma_treat_var: float
Variance of the trauma cubicle treatment distribution (Lognormal)
arrival_rate: float
Set the mean of the exponential distribution that is used to sample the
inter-arrival time of patients
sim_duration: int
The number of time units the simulation will run for
number_of_runs: int
The number of times the simulation will be run with different random number streams
'''
= 42
random_number_set
= 4
n_cubicles = 40
trauma_treat_mean = 5
trauma_treat_var
= 5
arrival_rate
= 600
sim_duration = 100
number_of_runs
# Class representing patients coming in to the clinic.
class Patient:
'''
Class defining details for a patient entity
'''
def __init__(self, p_id):
'''
Constructor method
Params:
-----
identifier: int
a numeric identifier for the patient.
'''
self.identifier = p_id
self.arrival = -np.inf
self.wait_treat = -np.inf
self.total_time = -np.inf
self.treat_duration = -np.inf
# Class representing our model of the clinic.
class Model:
'''
Simulates the simplest minor treatment process for a patient
1. Arrive
2. Examined/treated by nurse when one available
3. Discharged
'''
# Constructor to set up the model for a run. We pass in a run number when
# we create a new model.
def __init__(self, run_number):
# Create a SimPy environment in which everything will live
self.env = simpy.Environment()
self.event_log = []
# Create a patient counter (which we'll use as a patient ID)
self.patient_counter = 0
self.patients = []
# Create our resources
self.init_resources()
# Store the passed in run number
self.run_number = run_number
# Create a new Pandas DataFrame that will store some results against
# the patient ID (which we'll use as the index).
self.results_df = pd.DataFrame()
self.results_df["Patient ID"] = [1]
self.results_df["Queue Time Cubicle"] = [0.0]
self.results_df["Time with Nurse"] = [0.0]
self.results_df.set_index("Patient ID", inplace=True)
# Create an attribute to store the mean queuing times across this run of
# the model
self.mean_q_time_cubicle = 0
self.patient_inter_arrival_dist = Exponential(mean = g.arrival_rate,
= self.run_number*g.random_number_set)
random_seed self.treat_dist = Lognormal(mean = g.trauma_treat_mean,
= g.trauma_treat_var,
stdev = self.run_number*g.random_number_set)
random_seed
def init_resources(self):
'''
Init the number of resources
and store in the arguments container object
Resource list:
1. Nurses/treatment bays (same thing in this model)
'''
self.treatment_cubicles = simpy.Store(self.env)
=g.n_cubicles,
populate_store(num_resources=self.treatment_cubicles,
simpy_store=self.env)
sim_env
# for i in range(g.n_cubicles):
# self.treatment_cubicles.put(
# CustomResource(
# self.env,
# capacity=1,
# id_attribute = i+1)
# )
# A generator function that represents the DES generator for patient
# arrivals
def generator_patient_arrivals(self):
# We use an infinite loop here to keep doing this indefinitely whilst
# the simulation runs
while True:
# Increment the patient counter by 1 (this means our first patient
# will have an ID of 1)
self.patient_counter += 1
# Create a new patient - an instance of the Patient Class we
# defined above. Remember, we pass in the ID when creating a
# patient - so here we pass the patient counter to use as the ID.
= Patient(self.patient_counter)
p
# Store patient in list for later easy access
self.patients.append(p)
# Tell SimPy to start up the attend_clinic generator function with
# this patient (the generator function that will model the
# patient's journey through the system)
self.env.process(self.attend_clinic(p))
# Randomly sample the time to the next patient arriving. Here, we
# sample from an exponential distribution (common for inter-arrival
# times), and pass in a lambda value of 1 / mean. The mean
# inter-arrival time is stored in the g class.
= self.patient_inter_arrival_dist.sample()
sampled_inter
# Freeze this instance of this function in place until the
# inter-arrival time we sampled above has elapsed. Note - time in
# SimPy progresses in "Time Units", which can represent anything
# you like (just make sure you're consistent within the model)
yield self.env.timeout(sampled_inter)
# A generator function that represents the pathway for a patient going
# through the clinic.
# The patient object is passed in to the generator function so we can
# extract information from / record information to it
def attend_clinic(self, patient):
self.arrival = self.env.now
self.event_log.append(
'patient': patient.identifier,
{'pathway': 'Simplest',
'event_type': 'arrival_departure',
'event': 'arrival',
'time': self.env.now}
)
# request examination resource
= self.env.now
start_wait self.event_log.append(
'patient': patient.identifier,
{'pathway': 'Simplest',
'event': 'treatment_wait_begins',
'event_type': 'queue',
'time': self.env.now}
)
# Seize a treatment resource when available
= yield self.treatment_cubicles.get()
treatment_resource
# record the waiting time for registration
self.wait_treat = self.env.now - start_wait
self.event_log.append(
'patient': patient.identifier,
{'pathway': 'Simplest',
'event': 'treatment_begins',
'event_type': 'resource_use',
'time': self.env.now,
'resource_id': treatment_resource.id_attribute
}
)
# sample treatment duration
self.treat_duration = self.treat_dist.sample()
yield self.env.timeout(self.treat_duration)
self.event_log.append(
'patient': patient.identifier,
{'pathway': 'Simplest',
'event': 'treatment_complete',
'event_type': 'resource_use_end',
'time': self.env.now,
'resource_id': treatment_resource.id_attribute}
)
# Resource is no longer in use, so put it back in
self.treatment_cubicles.put(treatment_resource)
# total time in system
self.total_time = self.env.now - self.arrival
self.event_log.append(
'patient': patient.identifier,
{'pathway': 'Simplest',
'event': 'depart',
'event_type': 'arrival_departure',
'time': self.env.now}
)
# This method calculates results over a single run. Here we just calculate
# a mean, but in real world models you'd probably want to calculate more.
def calculate_run_results(self):
# Take the mean of the queuing times across patients in this run of the
# model.
self.mean_q_time_cubicle = self.results_df["Queue Time Cubicle"].mean()
# The run method starts up the DES entity generators, runs the simulation,
# and in turns calls anything we need to generate results for the run
def run(self):
# Start up our DES entity generators that create new patients. We've
# only got one in this model, but we'd need to do this for each one if
# we had multiple generators.
self.env.process(self.generator_patient_arrivals())
# Run the model for the duration specified in g class
self.env.run(until=g.sim_duration)
# Now the simulation run has finished, call the method that calculates
# run results
self.calculate_run_results()
self.event_log = pd.DataFrame(self.event_log)
self.event_log["run"] = self.run_number
return {'results': self.results_df, 'event_log': self.event_log}
# Class representing a Trial for our simulation - a batch of simulation runs.
class Trial:
# The constructor sets up a pandas dataframe that will store the key
# results from each run against run number, with run number as the index.
def __init__(self):
self.df_trial_results = pd.DataFrame()
self.df_trial_results["Run Number"] = [0]
self.df_trial_results["Arrivals"] = [0]
self.df_trial_results["Mean Queue Time Cubicle"] = [0.0]
self.df_trial_results.set_index("Run Number", inplace=True)
self.all_event_logs = []
# Method to run a trial
def run_trial(self):
print(f"{g.n_cubicles} nurses")
print("") ## Print a blank line
# Run the simulation for the number of runs specified in g class.
# For each run, we create a new instance of the Model class and call its
# run method, which sets everything else in motion. Once the run has
# completed, we grab out the stored run results (just mean queuing time
# here) and store it against the run number in the trial results
# dataframe.
for run in range(g.number_of_runs):
random.seed(run)
= Model(run)
my_model = my_model.run()
model_outputs = model_outputs["results"]
patient_level_results = model_outputs["event_log"]
event_log
self.df_trial_results.loc[run] = [
len(patient_level_results),
my_model.mean_q_time_cubicle,
]
# print(event_log)
self.all_event_logs.append(event_log)
self.all_event_logs = pd.concat(self.all_event_logs)
= Trial()
my_trial
my_trial.run_trial()
4 nurses
50) my_trial.all_event_logs.head(
patient | pathway | event_type | event | time | resource_id | run | |
---|---|---|---|---|---|---|---|
0 | 1 | Simplest | arrival_departure | arrival | 0.000000 | NaN | 0 |
1 | 1 | Simplest | queue | treatment_wait_begins | 0.000000 | NaN | 0 |
2 | 1 | Simplest | resource_use | treatment_begins | 0.000000 | 1.0 | 0 |
3 | 2 | Simplest | arrival_departure | arrival | 3.399660 | NaN | 0 |
4 | 2 | Simplest | queue | treatment_wait_begins | 3.399660 | NaN | 0 |
5 | 2 | Simplest | resource_use | treatment_begins | 3.399660 | 2.0 | 0 |
6 | 3 | Simplest | arrival_departure | arrival | 8.497645 | NaN | 0 |
7 | 3 | Simplest | queue | treatment_wait_begins | 8.497645 | NaN | 0 |
8 | 3 | Simplest | resource_use | treatment_begins | 8.497645 | 3.0 | 0 |
9 | 4 | Simplest | arrival_departure | arrival | 8.596678 | NaN | 0 |
10 | 4 | Simplest | queue | treatment_wait_begins | 8.596678 | NaN | 0 |
11 | 4 | Simplest | resource_use | treatment_begins | 8.596678 | 4.0 | 0 |
12 | 5 | Simplest | arrival_departure | arrival | 8.608025 | NaN | 0 |
13 | 5 | Simplest | queue | treatment_wait_begins | 8.608025 | NaN | 0 |
14 | 6 | Simplest | arrival_departure | arrival | 11.359739 | NaN | 0 |
15 | 6 | Simplest | queue | treatment_wait_begins | 11.359739 | NaN | 0 |
16 | 7 | Simplest | arrival_departure | arrival | 19.509442 | NaN | 0 |
17 | 7 | Simplest | queue | treatment_wait_begins | 19.509442 | NaN | 0 |
18 | 8 | Simplest | arrival_departure | arrival | 22.877356 | NaN | 0 |
19 | 8 | Simplest | queue | treatment_wait_begins | 22.877356 | NaN | 0 |
20 | 9 | Simplest | arrival_departure | arrival | 26.653863 | NaN | 0 |
21 | 9 | Simplest | queue | treatment_wait_begins | 26.653863 | NaN | 0 |
22 | 1 | Simplest | resource_use_end | treatment_complete | 40.317385 | 1.0 | 0 |
23 | 1 | Simplest | arrival_departure | depart | 40.317385 | NaN | 0 |
24 | 5 | Simplest | resource_use | treatment_begins | 40.317385 | 1.0 | 0 |
25 | 10 | Simplest | arrival_departure | arrival | 40.737793 | NaN | 0 |
26 | 10 | Simplest | queue | treatment_wait_begins | 40.737793 | NaN | 0 |
27 | 2 | Simplest | resource_use_end | treatment_complete | 42.443230 | 2.0 | 0 |
28 | 2 | Simplest | arrival_departure | depart | 42.443230 | NaN | 0 |
29 | 6 | Simplest | resource_use | treatment_begins | 42.443230 | 2.0 | 0 |
30 | 4 | Simplest | resource_use_end | treatment_complete | 48.809628 | 4.0 | 0 |
31 | 4 | Simplest | arrival_departure | depart | 48.809628 | NaN | 0 |
32 | 7 | Simplest | resource_use | treatment_begins | 48.809628 | 4.0 | 0 |
33 | 3 | Simplest | resource_use_end | treatment_complete | 51.483457 | 3.0 | 0 |
34 | 3 | Simplest | arrival_departure | depart | 51.483457 | NaN | 0 |
35 | 8 | Simplest | resource_use | treatment_begins | 51.483457 | 3.0 | 0 |
36 | 11 | Simplest | arrival_departure | arrival | 71.026558 | NaN | 0 |
37 | 11 | Simplest | queue | treatment_wait_begins | 71.026558 | NaN | 0 |
38 | 5 | Simplest | resource_use_end | treatment_complete | 77.447488 | 1.0 | 0 |
39 | 5 | Simplest | arrival_departure | depart | 77.447488 | NaN | 0 |
40 | 9 | Simplest | resource_use | treatment_begins | 77.447488 | 1.0 | 0 |
41 | 6 | Simplest | resource_use_end | treatment_complete | 83.962251 | 2.0 | 0 |
42 | 6 | Simplest | arrival_departure | depart | 83.962251 | NaN | 0 |
43 | 10 | Simplest | resource_use | treatment_begins | 83.962251 | 2.0 | 0 |
44 | 12 | Simplest | arrival_departure | arrival | 87.458700 | NaN | 0 |
45 | 12 | Simplest | queue | treatment_wait_begins | 87.458700 | NaN | 0 |
46 | 13 | Simplest | arrival_departure | arrival | 87.465138 | NaN | 0 |
47 | 13 | Simplest | queue | treatment_wait_begins | 87.465138 | NaN | 0 |
48 | 7 | Simplest | resource_use_end | treatment_complete | 95.498040 | 4.0 | 0 |
49 | 7 | Simplest | arrival_departure | depart | 95.498040 | NaN | 0 |
= pd.DataFrame([
event_position_df 'event': 'arrival',
{'x': 50, 'y': 300,
'label': "Arrival" },
# Triage - minor and trauma
'event': 'treatment_wait_begins',
{'x': 205, 'y': 275,
'label': "Waiting for Treatment"},
'event': 'treatment_begins',
{'x': 205, 'y': 175,
'resource':'n_cubicles',
'label': "Being Treated"},
'event': 'exit',
{'x': 270, 'y': 70,
'label': "Exit"}
])
animate_activity_log(=my_trial.all_event_logs[my_trial.all_event_logs['run']==1],
event_log= event_position_df,
event_position_df=g(),
scenario=True,
debug_mode=False,
setup_mode=1,
every_x_time_units=True,
include_play_button=20,
icon_and_text_size=6,
gap_between_entities=25,
gap_between_rows=700,
plotly_height=200,
frame_duration=1200,
plotly_width=300,
override_x_max=500,
override_y_max=g.sim_duration,
limit_duration=25,
wrap_queues_at=125,
step_snapshot_max="dhm",
time_display_units=False,
display_stage_labels="https://raw.githubusercontent.com/Bergam0t/vidigi/refs/heads/main/examples/example_1_simplest_case/Simplest%20Model%20Background%20Image%20-%20Horizontal%20Layout.drawio.png",
add_background_image )
Animation function called at 00:39:50
Iteration through minute-by-minute logs complete 00:39:54
Snapshot df concatenation complete at 00:39:54
Reshaped animation dataframe finished construction at 00:39:54
Placement dataframe finished construction at 00:39:54
Output animation generation complete at 00:39:57
Total Time Elapsed: 7.31 seconds